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Dilute gas–solid flow in a riser
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Abstract

The hydrodynamic behaviour of dispersed gas–solid flow in a riser is simulated using the two-fluid model formalism, with complementary
information from the kinetic theory of granular media to represent the transport properties of the solid phase. The specific source terms of
phases interaction are described in the momentum transport and fluctuating kinetic energy equations of each phase. The simulation results
show the highly unsteady state of the flow. Inspection of the kinematic parameters fluctuations confirms these results. The core–annulus
structure and the existence of clusters are well predicted. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dilute gas–solid flows are used in ultra-rapid gas-phase
catalytic reactions with the solid particles as catalysts. Their
principal advantages are that they ensure optimal conditions:
high temperatures and short contact times. Major applica-
tions are fluid catalytic cracker (FCC) risers and circulat-
ing fluidized bed (CFB) combustors. However, the transfer
mechanisms within the dilute gas–solid flow are still not well
understood. A dilute gas–solid flow is made up of coexist-
ing very dilute (core) and dense (cluster, annulus) regions.
Therefore, the hydrodynamic model must take into account
simultaneously the gas–particle and particle–particle inter-
actions in the mean and fluctuating motion by entrainment
and interparticle collision mechanisms.

The approach used is that developed by Simonin and
coworkers [1–3] based on the two-fluid model. The trans-
port properties of the solid phase are obtained by applying
the kinetic theory of gases while taking into account the
influence of the interstitial gas.

2. Transport equations: average fields

The transport equations describing gas–solid turbulent
two-phase flow may be derived by applying the conditional
phase-averaging method for the gas and the kinetic the-
ory formalism for the discrete particle. In the following,
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subscriptk refers to each phase (k = 1 for the gas andk = 2
for the particles).

• Mass balance:

∂

∂t
αkρk + ∂

∂xi
αkρkUk,i = 0 (1)

whereαk is the mean volumetric fraction andρk the den-
sity of the phasek. Uk,i = 〈uk,i〉k represents the mean
velocity component of the phasek defined by the condi-
tional volumetric phase average〈 〉k. It complies with the
fluctuating velocityu′′

k,i = uk,i − Uk,i .
• Momentum balance:

∂

∂t
αkρkUk,i + ∂

∂xj
αkρkUk,jUk,i

= −αk ∂P1

∂xi
− ∂

∂xj
Σk,ij + αkρkgi + Ik,i (2)

whereP1 is the mean pressure of the gas,Σk,ij repre-
sents the effective stress tensor in thek phase, andIk,i
corresponds to the inter-phase momentum exchange after
subtracting the contribution due to the mean gas-pressure
gradient.

• Momentum transfer: The interfacial momentum exchange
is modelled in the specific case of gas–solid flow implying
large and heavy particleρ2/ρ1 	 1. In this case, the
forces due to the gas on a single particle reduce to the
mean pressure gradient and to the drag. The corresponding
term in the mean momentum equation can be written as

I2,i = −I1,i = −α2ρ2Vr,i

τF
12
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Nomenclature

CD drag coefficient (–)
d particle diameter (m)
ec coefficient of elastic restitution (–)
g gravity (m s−2)
g0 pair-correlation function (–)
I inter-phase momentum exchange

(kg m−2 s−2)
K diffusion coefficient (m2 s−1)
P pressure (Pa)
q12 gas–particle velocity correlation (m2 s−2)
q2 turbulent kinetic energy (m2 s−2)
R kinetic stress tensor (m2 s−2)
Re Reynolds number (–)
S velocity third-order moment tensor (m3 s−3)
t time (s)
u′′
k,i ith component of fluctuating velocity

vector for phasek (m s−1)
Uk,i ith component of mean velocity vector

for phasek (m s−1)
Vd,i ith component of drift velocity vector

(m s−1)
Vr,i ith component of relative velocity vector

(m s−1)
x spatial coordinate (m)

Greek symbols
α volumetric fraction (–)
ε turbulent dissipation (m2 s−3)
Θk,ij shear tensor for phasek (kg m−1 s−2)
λ granular viscosity (Pa s)
µ dynamic viscosity (Pa s)
ν kinematic viscosity (m2 s−1)
ξ collisional constant (–)
Π source term of turbulent kinetic energy

(kg m s−3, kg m s−4)
ρ density (kg m−3)
σ collisional constant (–)
Σk,ij effective stress tensor for phase

k (kg m−1 s−2)
τ characteristic time (s)
φ correction function due to inelasticity

of collision (–)
χij vector of collisional source term for

fluctuating particle energy (kg m−1 s−3)

Index
c collisional
f fluidization
fp primary fluidization
fs secondary fluidization
g gas
i, j,m spatial coordinates

k phase;k = 1: gas,k = 2: solid,
k = 12: gas–solid covariance

mf minimum of fluidization
s solid
t turbulent
tv terminal velocity

Subscripts
c collisional
f fluid
F entrainment by fluid
kin kinetic
t turbulent

Operators
〈·〉 volumetric phase average
∂/∂xi gradient
∂/∂xj transposed gradient
∂/∂xm divergence
| · | norme
δij Kronecker operator

whereτF
12 is the characteristic time-scale of gas–particle

momentum transfer, or particle relaxation time. The mean
relative velocityVr,i = [U2,i − U1,i ] − Vd,i in which
the drifting velocityVd,i represents the difference due to
the correlation between the instantaneous distribution of
the particle and the fluid turbulent velocity. This term is
modelled as a diffusion term [8]. The dispersion coeffi-
cient is a function of a characteristic time of turbulence
related to the particle and the two-phase fluctuating
velocity covariance:

Vd,i = −Dt
12,ij

1

α1α2

∂α2

∂xj
, Dt

12,ij = τ t
12〈u′′

1,iu
′′
2,j 〉2

The time-scaleτF
12 is based on an empirical relation-

ship. For dilute gas–solid flow, the starting point is the
Stokes law modified in order to account for Reynolds
number influence and the concentration effects [4]. In
dense gas flow, a correlation based on Ergun’s relation
[5] is used:

◦ α2 < 0.2:

1

τF
12

= 3

4

ρ1

ρ2

CD

d
α−1.7

1 〈|Vr|〉, Re = α1〈|Vr,i |〉d
ν1

,

CD =



24

Re
[1 + 0.15Re0.687], Re < 1000

0.44, Re ≥ 1000

◦ α2 ≥ 0.2:

1

τF
12

= ρ1

ρ2

[
α2

150

Re
+ 1.75

]
1

d
〈|Vr|〉
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3. Transport equations: fluctuating fields

3.1. Fluctuating particle motion

A statistical approach is used to determine the transport
properties of the solid phase. The particle–particle collisions
are taken into account and considered to be inelastic with a
coefficient of restitutionec (0 < ec < 1). The development
of this approach leads to an expression of the solid-phase
effective stress tensor in two parts [6,7]:

Σ2,ij = α2ρ2R2,ij +Θ2,ij

The first partR2,ij = 〈u′′
2,iu

′′
2,j 〉2 represents the kinetic con-

tribution which corresponds to the second-order tensor of
the velocity fluctuations representing the transport of mo-
mentum by the particles between collisions.

The second part,Θ2,ij, represents the momentum transport
due to particle–particle collisions. The transport equations
for each component of the kinetic portion of the tensor have
been developed by He and Simonin [8] and are written in
the following form:

α2ρ2

(
∂R2,ij

∂t
+ U2,k

∂R2,ij

∂xk

)

= − ∂

∂xk
(α2ρ2S2,ijk +Θ2,ijk)− α2ρ2

τF
12

(R2,ij

− R12,ij)− (α2ρ2R2,ik +Θ2,ik)
∂U2,j

∂xk

− (α2ρ2R2,jk +Θ2,jk)
∂U2,i

∂xk
+ χij (3)

The first term on the right-hand side of this equation is inter-
preted as a diffusion term and represents the transport of ki-
netic stress by the fluctuating motionS2,ijk = 〈u′′

2,iu
′′
2,j u

′′
2,k〉

and the collisions. The second term represents the interac-
tions between the fluctuating motion of the particles and
the gas, which leads to a local destruction or production of
kinetic stress, depending on the value of the fluid–particle
correlation tensor:

R12,ij = 1
2(〈u′′

1,iu
′′
2,j 〉2 + 〈u′′

2,iu
′′
1,j 〉2)

The third and fourth terms represent the creation of kinetic
stress by the mean solid velocity gradients. The last term,
relative to the collisions, contributes to the isotropic nature of
the stress tensor and to its destruction in the case of inelastic
collisions.

In practice, the effects of transport and diffusion on the
kinetic stresses were negligible. An equilibrium between
the production and dissipation terms may be reached when
the gradient of the solid mean velocity remains small com-
pared to the inverse dissipative time-scale. This time-scale
takes the form of a competition between particle relaxation
time and the interparticle collision time:(1/τ t

2) = (2/τF
12)+

(σc/τ
c
2). Under these assumptions and assuming isotropic

kinetic stresses, this leads to a practical form of the effective
solid stress tensor, including collisional effects:

Σ2,ij =
[
P2 − λ2

∂U2,m

∂xm

]
δij

−µ2

[
∂U2,i

∂xj
+ ∂U2,j

∂xi
− 2

3

∂U2,m

∂xm
δij

]
(4)

whereP2 = 2
3(α2ρ2q

2
2[1 + 2α2g0(1 + ec)]) is the granu-

lar pressure,λ2 = 4
3(α

2
2ρ2dg0(1+ ec)[(2/3)(q2

2/π)]
1/2) the

granular viscosity, andµ2 = α2ρ2[νkin
2 + νc

2] the shear vis-
cosity.

The expressions for the kinetic and collisional parts of the
shear viscosity are obtained from the extra-diagonal corre-
lation transport equations for a homogeneous shear flow:

νkin
2 =

[
1

3
τ t

12q12 + 1

2
τF

12
2

3
q2

2(1 + α2g0φc)

]

×
[

1 + σc

2

τF
12

τ c
2

]−1

(5)

νc
2 = 4

5
α2g0(1 + ec)


νkin

2 + d
√

2

3

q2
2

π


 (6)

with σc = 1
5(1 + ec)(3 − ec) andφc = 2

5(1 + ec)(3ec − 1)
and the characteristic time between collisions

τ c
2 =

(
6α2g0

d

√
16

π

2

3
q2

2

)−1

,

g0 =
(

1 − α2

α2m

)−2.5α2m

, α2m = 0.64

The pair-correlation functiong0 is introduced to take into
account the increase in the number of collisions when the
volume fraction of solids approaches the maximum value
α2m = 0.64 for a random packing of spheres with the same
diameter.

The resulting viscosity expression is consistent with the
known limits; for very diluted suspensions, it is controlled
by the fluid turbulence (Tchen’s theory), and in the dense
limit it is controlled by the interparticle collisions. In the in-
termediate regime, there is a competition between the differ-
ent mechanisms according to the characteristic time-scales.
It may be remarked that the solid kinetic viscosity is a func-
tion of the particle relaxation timeτF

12, implying a mean free
path controlled either by the distance between two collisions
or by friction with the gas. In practical configurations such
as when the solid volumetric fraction is very low (<0.5%
typically), collisions between particles are infrequent. In this
case, the predicted mean free path larger than the duct di-
ameter itself requires a Knudsen-type correction.

The granular pressure and solid-phase effective viscosity
are written as a function of the fluctuating kinetic energy
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q2
2 = 1

2〈u′′
2,iu

′′
2,i〉2 defined by an additional transport equa-

tion obtained by summing the diagonal part of the kinetic
stress transport equations:

∂α2ρ2q
2
2

∂t
+ ∂α2ρ2U2,j q

2
2

∂xj

= −Σ2,ij
∂U2,i

∂xj
+ ∂

∂xj

[
α2ρ2(K

kin
2 +Kc

2)
∂q2

2

∂xi

]

−α2ρ2
1

τF
12

(2q2
2 − q12)− α2ρ2

1

3

1 − e2c
τ c

2
q2

2 (7)

The right-hand side of this equation includes the production
term due to the gradient of the mean velocity, the diffusion
term, and the destruction terms caused by the interactions
with the fluctuating motion of the gas and the inelastic col-
lisions. The effective diffusivity is also decomposed in the
form of kinetic and collisional contributions:

Kkin
2 =

[
1

3
τ t

12q12 + 5

9
τF

12
2

3
q2

2(1 + α2g0ϕc)

]

×
[

1 + 5

9
ξc
τF

12

τ c
2

]−1

(8)

Kc
2 = α2g0(1 + ec)


6

5
Kkin

2 + 4

3
d

√
2

3

q2
2

π


 (9)

with ξc = 1
100(1 + ec)(49 − 33ec) and ϕc = 3

5(1 + ec)2
(2ec − 1).

3.2. Gas turbulence

The modelling of the gas-phase effective stress tensor is
performed in the framework of the classical turbulent eddy
viscosity modeq2

1 − ε in which particle influence is taken
into account. The drag force due to particles in the gas
momentum equation introduces an extra term in the fluc-
tuating kinetic energy transport equation for the gas phase,
Πq1 = −α2ρ2(1/τF

12)(2q
2
1 − q12 − VdVr), and the corre-

sponding term in theε transport equation. For gas–solid
flows, the termΠq1 generally leads to a destruction of the
turbulent kinetic energy thus decreasing the turbulent vis-
cosity. Finally, the gas–particle velocity correlation,q12, is
determined from a semi-empirical transport equation [5]:

∂α2ρ2q12

∂t
+ ∂α2ρ2U2,j q12

∂xj

= ∂

∂xj

[
α2ρ2

νt
12

σq

∂q12

∂xi

]
− α2ρ2ε12 +Πq12

−α2ρ2〈u′′
1,iu

′′
2,j 〉2

∂U2,i

∂xj
−α2ρ2〈u′′

2,iu
′′
1,j 〉2

∂U1,i

∂xj
(10)

with ε12 = q12/τ
t
12 andΠq12 = −(α2ρ2/τ

F
12)[(1+X21)q12−

2q2
1 − 2X21q

2
2], X12 = α2ρ2/α2ρ2

The first term on the right-hand side represents the
covariance transport by the fluctuating velocity. The second
one takes into account the destruction by the fluid viscosity
and the decorrelation of the fluctuating motion due to the
slip between the phases. The third one characterizes the
interaction with the fluctuating motion of each phase. The
two last terms represent production due to the mean velocity
gradient.

4. Basic mechanisms and flow regimes

The elementary mechanisms of gas–particle and particle–
particle interactions taken into consideration are:

• Gas-phase turbulence and its Lagrangian time-scaleτ t
1.

• The coupling between the fluctuating motion of the gas
and the agitation of the particles characterized byτ t

12, the
fluctuation time of the fluid as seen by the particles.

• The entrainment of the solid particles by the motion of
the gas, with which is associated the relaxation timeτF

12,
a characteristic of the inertia of the particles.

• The collisions withτ c
2, the characteristic time between the

collisions.

The last two mechanisms involve the fluctuating motion of
the particles characterized by the contact timeτ t

2.
In order to quantify the importance of the different physi-

cal mechanisms involved in gas–solid flow, their time-scales
can be compared:

• τ t
1 < τ

t
2: the dominant mechanisms are inherent to the gas

phase. The time between two collisions is large; therefore,
the motion of the particles is considered to be statistically
independent. This regime is called the dilute regime and
is encountered only at low solid volume fractionsα2 <

0.001.
Depending on their relaxation times the particles be-

have differently from the gas turbulence. IfτF
12 is very

large, particles are not affected by the gas turbulence. But
if τF

12 � τ t
1 the particles act like fluid elements.

• τ t
1 > τ

t
2: the granular motion is slightly perturbed by the

presence of the gas. This situation emerges at large solid
volumetric fractionsα2 > 0.1. This is the dense or colli-
sional regime. In this case, the internal momentum trans-
port in the solid phase is dominated by particle–particle
collisions. If τF

12 is very large then the gas–particle inter-
actions are small. However, ifτF

12 � τ t
2, then the motions

of the two-phases are coupled.
• τ t

1 � τ t
2: the gas–particle and particle–particle interactions

are in competition. This intermediate regime is called the
kinetic regime. IfτF

12 � τ t
1, the motion of the particles

is controlled by the turbulence of the gas. In the opposite
case,τ t

1 � τF
12, the fluctuating motion of each phase is

uncorrelated but the gas influences the transport properties
of the particles by limiting their mean free path when
τF

12 � τ c
2.
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5. Application

5.1. Riser geometry—operating conditions

The simulation of an elementary situation, a two-
dimensional riser, is proposed in order to evaluate the pre-
dictive capabilities of the present model. Geldart group
A particles are transported with air at standard tempera-
ture and pressure. The phases are considered inert with no
thermal phenomenon. The physical characteristics of each
phase are summarized in Table 1.

The geometric configuration is representative of the con-
figuration of a catalytic cracker riser (Fig. 1). The duct is
two-dimensional. The solid phase is injected as dense phase
at the lower part of the riser. Fluidization of the dense bed is
realized by a fraction of the circulating gas. The remaining

Table 1

Gas phase Solid phase

ρ (kg m−3) 1.2 1500
ν (m2 s−1) 1.8 × 10−5 –
d (�m) – 100
Umf (m s−1) – 0.005
α1mf (–) 0.36
Utv (m s−1) – 0.33
ec – 0.90
Group (Geldart) – A

Fig. 1. Riser geometry.

Table 2

Riser height (m) 7.75
Riser width (m) 0.25
Bottom gas inlet
Primary fluidization velocity (m s−1) 0.50
Parietal inlet
Secondary fluidization velocity (m s−1) 10.00
Solid mass flux (kg m−2 s−1) 112.50
Outlet section
Outlet pressure (kPa) 100.00

fraction, introduced above the solid inlet by two parietal in-
jectors, propels the solid into the riser. The two-phase stream
exits the riser through a right-hand elbow. The geometrical
and operating conditions are summarized in Table 2.

5.2. Boundary conditions

The model requires boundary conditions for the mean
and fluctuating fields. Logarithmic velocity profiles for wall
conditions are used for the gas phase. For the solid phase a
slip condition is applied to the tangential component of the
velocity. The fluctuating kinetic energy flux is set to zero
in agreement with the assumption of elastic particle–wall
collisions.

5.3. Mesh and code

The stretched Cartesian grid is composed of 45× 260
nodes. The minimal size of a node, near walls, is 3 mm in
both thex-direction and in they-direction. The maximal
size of a node is 12 mm in thex-direction and 25 mm in
they-direction. The time step is in the order of 10−2 s. The
computational cost on silicon graphics solid impact is 10−4 s
per node per sweep and per time step, that is 3 h for 20 s
of flow. Calculation is performed using a commercial code,
Phoenics, based on a volume difference scheme.

5.4. Results

One of the important results is the prediction of the
unstable nature of the flow resulting from the development
of physical instabilities causing heterogeneities in the solid
volume fraction. Fig. 2 illustrates this as the cartography of
the volume fraction of solids at successive time increments
0t = 0.2 s. At the base of the riser below the secondary
feed a dense bed forms. Over the majority of the dense bed,
the value of the solids volume fraction is approximately
15%, and less than 5% inside the bubbles. Their circulation
is typical of this type of particle. The bubbles generated at
the bottom of the dense bed near the walls either dissipate
or rise and grow within the bed, following a non-rectilinear
trajectory, before bursting at the bed surface. Their form is
strongly influenced by the presence of other neighbouring
bubbles and they may even coalesce.
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Fig. 2. Solid volumetric fraction,0t = 0.2 s.

The secondary air injection pushes the solids from the
dense bed into the riser in the form of a central jet. As it rises
it breaks up, giving rise to a low concentration stream(α2 �
2%) at the centre and agglomerates at the wall: clusters
(α2 � 10%). These elementary structures are in constant
evolution during their transport. The physical phenomena
being unstable and turbulent, a statistical analysis over a
time of 10 s allows us to observe the overall behaviour of
the mean values and their standard deviation:

Xmean= 1

N

i=N∑
i=1

Xi,

σX = 1

Xmean

√√√√ 1

N − 1

i=N∑
i=1

(Xi −Xmean)2

The radial profiles are shown as a function of the geometrical
parameters; widths and heights non-dimensionalized by the
width of the channel.

The radial profiles of the mean solid volume fraction
(Fig. 3) are representative of the core–annulus structure ob-
served experimentally [9–12]. We observe a flat portion at

the centre of the tube and a much more solid portion near
the wall. The aeration of the central portion and the accumu-
lation of particles at the wall increases along the height of
the riser. The presence of an elbow at the outlet breaks the
symmetry of the radial particle concentration profile which
is largest at the outside of the elbow. The profiles of the stan-
dard deviation are very large (Fig. 4). The values of 50% at

Fig. 3. Solid volumetric fraction, mean value.
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Fig. 4. Solid volumetric fraction, standard deviation.

the centre of the tube and >100% near the walls are the con-
sequence of a fluctuating flow, and the intermittence near
the wall is due to the presence of clusters. As a matter of
fact, visual observations show that near the wall the solid
agitation is locally damped. This implies accumulation of
solids and cluster formation. Hydrodynamic characteristics
of these clusters are different from isolated particles in in-
tensity and fluctuating frequency. The temporal fluctuations
of the solids fraction are very important near the secondary
injector. They diminish along the height of the riser.

The mean velocity (Figs. 5–7) and the standard deviation
show similar radial profiles. The form of the mean value

Fig. 5. Gas velocity, mean value.

Fig. 6. Gas velocity, standard deviation.

Fig. 7. Solid velocity, mean value.

Fig. 8. Solid velocity, standard deviation.

profiles is influenced by the injectors over a large part of the
riser and by the outlet conditions. At the base of the riser the
profiles are symmetrical, with maximum values near the wall
and minimum values at the centre. The profiles then become
more uniform along the riser. Just below the outlet the pro-
files again become a symmetrical with the velocity varying
linearly across the elbow. The mean velocity of the solids
is always smaller than the gas velocity; their difference be-
ing the same order of magnitude as the terminal velocity of
the particles. The spatial evolution of the profile along the
riser due to the inlet and outlet conditions does not allow for
a fully established flow to be obtained. The radial profiles
of the standard deviation of the mean velocity are uniform,
with an important value of around 30% for the region influ-
enced by the initial conditions (Fig. 8). In the upper section,
near the outlet, the profiles become a symmetrical, with an
important increase in the fluctuating nature of the flow for
the low-velocity zone near the outside of the elbow.

6. Conclusion

The hydrodynamic behaviour of a dilute gas–solid flow
was modelled using a two-fluid model and the kinetic theory
of gases to represent the transport properties of the solid
phase.



48 G. Ferschneider, P. Mège / Chemical Engineering Journal 87 (2002) 41–48

Comparative study of the fluctuation time of each phase
showed a collisional fluidization regime where the internal
momentum transfer in the solid phase is dominated by col-
lisions and a kinetic regime in which the fluid–particle and
particle–particle interactions by collision are in competition.
The asymptotic behaviour of the model is consistent with
the limiting cases of a very dilute flow and a granular flow
in the absence of gas.

The simulation of an elementary two-dimensional riser
using Geldart group A particles illustrates the ability of the
model to represent dilute gas–solid flow. The simulation
results show the highly unsteady state of the flow. Inspec-
tion of the kinematic parameters fluctuations confirms these
results. The core–annulus structure and the existence of
agglomerates is well predicted.

The flow is never fully established and is strongly influ-
enced by the outlet geometry in the upper portion of the
riser.
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